Status of Aquatic Invertebrates in Texas and the Edwards Plateau

Pete Diaz
Texas Fish and Wildlife Conservation Office

Like a Whole Other Country

- Wide range in geology
- Precipitation gradient
- Large range in latitudes

West Texas

East Texas

- Kleinsasser et al. 2004
- Basic problems with urbanization

Edwards Plateau Phreatic Endemics

Gibson et al. 2008

Edwards Plateau Benthic Endemics

Threatened due to anthropogenic stressors

Stressors

- Change
 - Large urban growth
 - Large increase in population density
- Result: Large shift in land use over short period of time and increases in municipal water consumption
 - Changes in hydrology, retention time, sediment transport

Urban Stream Syndrome

- Increases the magnitude peak discharges
- Loss of retention time
- Movement of sediment and organic matter
- Channel incision and bank erosion
- Increased turbitity
- Covering of habitat types (e.g. riffles)
- Nonpoint source of urban chemicals

Urbanization Effects

- Impervious cover used as a surrogate for urbanization
- Acceptable levels <10%
- At 25% detrimental effects on the aquatic community
- However, recent studies suggest lower levels ~1%-5% (King et al. 2011)

Monitoring the Sprawl

 Two projects within the Edwards

- Eurycea Toxicity Project
 - 21 Springs in Travis, Williamson and Hays Counties
- Hill Country Urban Intensity
 Index
 - McMahon and Cuffney 2000
 - ~60 Sites

Methods Euyrcea Tox

- All areas delineated using NHD Plus at the catchment level
- All land cover data taken from the NLCD 2006
- Impervious cover calculated using weighted averages
- Aquatic invertebrates sampled using a surber sampler (N = 3)
- Hydrolab (DO, Temp, Conductivity, pH)
- Passive water quality samplers
- Collection of salamanders and fish for contaminant residue analysis at Columbia Miss, USGS

Water Quality from Passive Sampers

- Seven sites
- Overall the more impervious cover, the more contaminants within the water
 - r = 0.93; t = 5.86; p = 0.002
- PAH driving the relationships

Site Name	% Imperv. Cover	PAHs	WW	estrogen screen	OCs	PCBs	PBDEs
Lanier Spring	0%	0	4	0	2	0	0
Twin Springs Preserve (GS)	2%	0	4	0	0	0	0
Swinbank (GS)	5%	2	6	0	0	0	0
Trib 4	10%	7	6	0	2	0	0
Trib 6 (TR6)	18%	1	6	1	3	0	0
Troll Springs	22%	18	8	1	2	0	1
Spicewood	38%	20	7	0	14	1	0

Moving Down the Ladder -- Fishes

Salamander Tissue Analysis

Salamander tissue from 11 composite samples

Aquatic Invertebrates and SPMDs

SPMD	r	TestStat	N	p
Ephemeroptera Taxa	-0.84	-3.60	7	0.01
Percent Dominant Taxa	0.85	3.71	7	0.01
Intolerant Taxa	-0.90	-4.72	7	0.005
Percent Chironomidae	0.79	2.96	7	0.03
РАН	r	TestStat	N	p
Taxa Richness	-0.77	-2.76	7	0.03
Ephemeroptera Taxa	-0.88	-4.32	7	0.008
Percent Dominant Taxa	0.91	5.22	7	0.003
Intolerant Taxa	-0.92	-5.54	7	0.002
Percent Chironomidae	0.82	3.32	7	0.02
Aquatic Life Use Score	-0.77	-2.71	7	0.04

So What

- See strong relationship between impervious cover (urbanization) and contaminants in Central Texas (¿Surprise?)
- What methods do we use to track, measure, and identify the status of aquatic habitats in Texas as changes in land use occur
- Question: What about areas with stressors that are not urbanization
 - Trans Pecos Region

UII Multi-metric Model

- Population Density
- Infrastructure
- Land Use Data
- Water Quality

 $Y = 100-Y_{neg\ corr.}$

$$URBI = \left(\sum_{1}^{n} Y_{i}\right) / n$$

$$X_{\text{adj}} = (X - X_{\min}) \div (X_{\max} - X_{\min}) * 100$$

- Aquatic Invertebrate Community
- Uses
 - Create threat based ranking system
 - Identify sites that have endemic species and create land management plans
 - Identify indicator species
 - Help shape restoration efforts

Data Collection

- USDA HUC
- EPA Ecoregion & TRI
- MRLC Land Cover
- USACE Dam Inventory
- Texas State Data Center Roads & Census
- Aquatic Invertebrates

Model Creation for Central Texas

- 5-Step Process (McMahon and Cuffney 2000)
 - Adjust raw data (standardize)
 - Transform data (ranging from 0-100)
 - Flip negatively correlated values (100-Y)
 - Calculate URBI
 - Create range of URBI from 0-100 for UII
- Variables with correlation (±0.5) to population density used in HC-UII model
- No impervious cover used in model creation

Hill Country UII

- Strong correlation with population density
 - percent developed land, TRI, percent forested land, road density, and housing density
 - Used to create HC-UII
 - Specific to the Central Texas region
- Common Urban Intensity Index
 - percent developed land, road density, and housing density (Cuffney and Falcone 2009)
 - For use on a large scale (state wide, nationwide)

Ull relationships with Impervious Cover

- At 5% Imp CV
 - HC-UII 22
 - C-UII 14
- Pre-effect Zone (10%)
 - HC-UII <34
 - C-UII < 26
- Effect Zone (+25%)
 - HC-UII 34-70
 - C-UII 26-60

Hill Country Urban Intensity Index and Impervious Cover

Common Urban Intensity Index and Impervious Cover

The Good the Bad and the Worse

- 45 sites below HC-UII of 22
- 4 sites in pre-effect zone
- 11 sites in effect zone
- Frio and Llano (Edwards and Real)
- Salado Creek and Onion (Bell and Travis)
- San Pedro Creek (Bexar)

HC-UII Scores and Geographic Position

Adding Invertebrates

- 41,578 aquatic inverts identified from 55 sites in 21 Counties
- Use inverts to examine relationship with HC-UII and C-UII in Texas
- Examine changes community structure associated with urbanization
- Determine metrics associated with urbanization

Aquatic Invertebrate Metrics

- A total of 15 different metrics
 - Tolerance Metrics
 - %Ephemeroptera, Intolerant/Tolerant, %Tolerant, # Intolerant, Diptera Taxa
 - Taxonomic Composition
 - HBI, % Dominant, Percent Chironomidae, % Hydropsyche
 - Taxonomic Richness
 - Ephemeroptera Taxa, Total Taxa, EPT
 - Functional Feeding Group
 - % Grazers, % Filterers, % Gatherers

41% of
Variance
explained by ₹
CCA

CAI

Roads

We lands

Population Density
Housing Density
Inpervious Cover

Grassland

Forested

USI

Agriculture

5a.

41% of
Variance
explained by ₹
CCA

CAI

41% of
Variance
explained by ₹
CCA

Univariate Analysis

Univariate Analysis

Aquatic Invertebrate Data

- 55 sites used for analysis
 - 0 limited
 - 5 intermediate
 - 16 High
 - 34 Exceptional
- Metrics significantly correlated with UII's:
 - HBI
 - Percent Dominant
 - Ephemeroptera
 - Tolerance Ratio

- Metrics significantly correlated with impervious cover:
 - HBI
 - Percent Dominant
 - Ephemeroptera
 - Tolerance Ratio
 - Total Taxa
 - Intolerant Taxa

Comparison to Literature

Model0	Pre-Effect Zone	Effect Zone	High Effect Zone
HC-UII	<34	34-70	70+
MA-UII DFW	<39	39-68	69+
McMahon and	<28	28-66	66+
Cuffney (2000)			
N-UII			
C-UII	<26	26-60	60+

Cuffney and Falcone 2009 Data

	MAUII	MANUII	NUII
Impervious Cover	0.92	0.95	0.97

	HC-UII	C-UII
Impervious Cover	0.886	0.947

Summary

 Multi-Metric Indices aid in site selection and conservation land management practices

When looking for thresholds of community structure use impervious cover

Central Texas is still in early stages of development

Now What

- This area is unique to the world
- Gap in data
- A few sites been developed
- Critical time to implement policy, incentive programs to protect sensitive areas

